Soaring behaviors in UAVs : ’animat’ design methodology and current results

نویسندگان

  • Stéphane Doncieux
  • Jean-Arcady Meyer
چکیده

Saving energy is a critical issue for mini and micro-UAVs. We used tools rooted in the ’animat’ approach to generate energy saving behaviors for a glider robot. The connection weights of feed-forward neural networks were optimized by evolutionary algorithms to exhibit “soaring” behaviors, i.e. behaviors that capitalize on aerological conditions to extract energy from the environment, focusing on thermal and slope wind exploitation. Thermal soaring with spiral trajectories and slope soaring with eight-shaped trajectories were thus exhibited. The optimization criterion used for thermal soaring was the average altitude gain. For slope soaring, an additional criterion forced the glider to remain in a limited area. These criteria were high-level specifications of the desired behaviors and did not include any direct description of the strategy needed to get them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ROBUR project: towards an autonomous flapping-wing animat

Flapping-wing flight is not applicable to huge aircrafts, but has a great potential for micro UAVs as demonstrated by real birds, bats or flying insects. The ROBUR project aims at designing a robotic platform that will serve to better understand the design constraints that this flying mode entails, and to assess its capacity to foster autonomy and adaptation. The article describes the major com...

متن کامل

Flush Air Data Sensing for Soaring-Capable UAVs

Dynamic soaring extracts energy from naturally occurring wind gradients that can be used to extend aircraft endurance, particularly in small UAVs. Autonomous thermal soaring has already been validated in flight tests with small UAVs, but this level of demonstration has not been performed for dynamic soaring UAVs, partly due to the precise wind measurements required. This paper explores wind vec...

متن کامل

Thermal soaring flight of birds and unmanned aerial vehicles.

Thermal soaring saves much energy, but flying large distances in this form represents a great challenge for birds, people and unmanned aerial vehicles (UAVs). The solution is to make use of the so-called thermals, which are localized, warmer regions in the atmosphere moving upward with a speed exceeding the descent rate of birds and planes. Saving energy by exploiting the environment more effic...

متن کامل

Real-time trajectory generation technique for dynamic soaring UAVs

This paper addresses the problem of generating real time trajectories for dynamic soaring of UAVs (unmanned aerial vehicles). The UAVs soar using the wind shear available over the oceans. The UAVs utilize the energy from low-altitude wind gradients to reduce fuel consumption. For a propeller driven UAV, a performance index is selected to minimize the average power required per cycle of powered ...

متن کامل

ArduSoar: an Open-Source Thermalling Controller for Resource-Constrained Autopilots

Autonomous soaring capability has the potential to significantly increase time aloft for fixed-wing UAVs. In this paper, we introduce ArduSoar, the first soaring controller integrated into a major autopilot software suite for small UAVs. We describe ArduSoar from the algorithmic standpoint, outline its integration with the ArduPlane autopilot, and discuss tuning procedures and parameter choices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007